Theoretical and Applied Genetics 40, 11—17 (1970)

On the Determination of Relative Fitness from Frequencies
of Genotypes in Subsequent Generations®

Part I. Algebra of Reproduction and Selection in Populations with Discrete Generations
R. J. LORENZ

Institut fir Biologie, Lehrstuhl fiir Genetik, der Universitit Tiibingen
und Bundesforschungsanstalt fiir Viruskrankheiten der Tiere, Tiibingen (GFR)

Summary. An algebraic treatment of reproduction and selection processes in populations of diploids with discrete
generation cycles is presented. The main objective was a determination of the conditions under which the selection
coefficients for the various genotypes can be determined solely on the basis of known frequencies of genotypes in
two subsequent generations. In part two, to be published later, the statistical properties of a special fitness estima-
tor, proposed by Hayman, are considered. Confidence intervals and tests of significance concerning hypotheses

about fitness are established and checked by computer simulation studies.

Introduction

This paper was stimulated by extensive studies in
predominantly selfpollinated species by Allard and
his coworkers. These studies were concerned with
generation-by-generation estimates of two kinds of
parameters whose values have implications concern-
ing population structure and the evolutionary poten-
tial of the populations under question. The first is
the proportion of selfing versus outcrossing, the second
are the relative viabilities of the two homozygotes and
the heterozygote at a diallelic locus.

The experimental basis for this task was obtained
by annual censuses of frequencies of the three geno-
types together with a separate experiment for the
estimation of the proportion of selfing, which is,
however, not independent in the statistical sense,
from the censuses.

The present author took special interest in two
types of problems. The first is concerned with the
inherent logic of inference of experiments such as
Allard’s. The total process leading from the genotype
composition in one generation to that in the next
one is a sequence of different reproductive and selec-
tive componental processes. A given pair of arrays
of genotype frequencies in the parental and offspring
generation can — in general — be explained by quite
different hypotheses about what has happened be-
tween the censuses, if further conditions cannot be
assumed to be satisfied. Unfortunately the censuses
alone give no indication with respect to this. In other
words: it doesn’t seem to be possible to prove the
conditions for the estimation procedure and, at the
same time, to estimate the parameters from the body
of census data alone.

* Gekiirzte Fassung einer der Mathem.-naturwiss.
Fakultdt der Universitdt Tiibingen eingereichten Disser-
tationsschrift (Teil I).

A further point of interest in the same context is,
that the estimation of outcrossing presupposes, that
fitnesses, which just are under question, satisfy cer-
tain conditions. On the other hand, the estimation
of fitnesses presupposes that, for example, the amount
of outcrossing is the same for each genotype. This
last condition is certainly not satisfied in general
(Harding and Tucker, 1964).

In part one of this paper an algebraic representa-
tion of reproductive and selective processes is given
by means of operators, which make the transforma-
tion process for the arrays of genotype frequencies
more transparent. The problem of whether unique
inference can be drawn on the type of selection force
at work then reduces to considering the algebraic
properties of the resulting systems of linear or non-
linear equations.

In part two the statistical properties of the fitness
estimator, which is due to Hayman (1953), is consider-
ed in more detail. This part will be published in
a subsequent paper. Especially the power functions
of some tests of significance for the null hypotheses,
that the fitnesses of the genotypes do not differ, are
evaluated by computer simulations. Furthermore,
confidence intervals are established for fitnesses.

1. Genotypic Vectors and Operators
of Reproduction

Consider two consecutive discrete generations »
and # + 1 of an infinite population of diploids. The
frequencies of genotypes (with respect to any number
of loci) are represented by the genotype vectors

Fy=UD 02 f9) (1.1)

and

Fugr = [f0 0 f2,0 oo, 0] (1.2)
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where
k .
and b) FfH =1,

=1

B
a) Zif}j) =1 (1.3)
iz

We have & = 3 for one locus and & = 10 or 9 for two loci
according to whether or not attraction and repulsion
heterozygotes are considered different classes. Some-
times the frequencies of genotypes will be labeled by
letters instead of integers, such as i@, f¥), f&),

The vector F, corresponds to a point in a space of &
dimensions, the position of which is characterized by
the condition f? =0 (i =1, ..., k) together with
(1.3.a). Thus this point is situated in the (k& — 1)-
dimensional hyperplane with equation (1.3.a), in
particular in the closed region f{#! = 0 of that plane.
In the simplest case {one locus, two alleles: &£ = 3)
this is the set of points inside of an equilateral triangle
(including its boundary), the edges of which coincide
with the points (1, 0, 0), (0, 1, 0), {0, 0, 1) of a three-
dimensional cartesian coordinate system. I, cor-
responds to a point in the same set.

The transition from generation » to generation
# -+ 1 may be considered to be composed of two steps.
In the first a vector of gamete genotypes

Gu=1g0. 82 ... &) (1.4)
can be derived from F,. We have » = 2 in the one
locus case, 7 = 4 for two loci, and » = 2! for ¢ loci,
each with two alleles. Every g¥) is a function of some
of the f{) and possibly of some further parameters &,
(for instance the frequency of recombination in case
of two or more loci). In general g® is therefore of the
form

g =gl (i P05 0e )
G=1,2,...,7)

(1.5)
Itis
7
a) gl —1=0 and b) g =0. (1.6
=

This system of equations (1.5) may be regarded as
an operator I, which, when applied to F,, produces
G N

n*

G, = I'(F,) . (1.7)

G, corresponds to a point in the (» — 1)-dimensional
hyperplane (1.6.a) which in turn is part of a space
of » dimensions. The effect of I"is therefore to map
a (k — 1)-dimensional set of points into a (» — 1)-
dimensional set.

The second step is the transition from G, to F,.q.
Every f{", is a function of some g’ and possibly of

some parameters ©; :
FO =r0 D, . gD, s, )
(t=1,2,...,R).
This system of equations may be regarded as another

operator Z, which, when applied to G,, produces
Fn+1:

(1.8)

Fopy = 2(G,) . (1.9)
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The effect of Z is to map the (» — 1)-dimensional set
of points, in which G, is contained, into the (¢ — 1)-
dimensional set with F,.,. Altogether we have

Fypo =Z+I'(F,) = O(F,), (1.10)

where the symbolic “multiplication”” means consecu-
tive execution of two operators (from right to left).

The effect of @ =Z=*]" is thus to map the original
set of points into itself. In detail the system of equa-
tions F,;, = @(F,) may be written as

;(»11)1 =@(f B0, B, )
(t=1,..., k.

If selection is present, some of the ¢; may be declared
as fitnesses. To distinguish these from other para-
meters, the i-th fitness is symbolized by w®, Thus

f;’h =@(ft, ... W e o w® 9,0, ).
(1.12)

Tt will be useful to associate different operators with
different components of selection or fitness. Selection
may act upon zygotes or gametes or both. In any
case it should be noticed which traits are affected by
selection. With zygotic selection, for example, the
viability of the zygote until maturity and/or fertility
of the mature zygote may be considered.

(1.41)

2. Selection Operators

When selection acts upon fertility, the fitnesses of
the different genotypes (mature) are labeled with the
index f. It is assumed that the individuals of the
various genotypes contribute different mean numbers
of gametes and that these mean numbers are in the
proportions w{!) : @@ : ... w®. Thisis equivalent to
replacing the f{# by

fal = w(,“f,(j)/fv, , where w; = 3wl fi. (1.13)

The f,) may be regarded as “effective” genotype
frequencies, with. the individuals of any genotype
now contributing the same numbers of gametes. The
substitutions f{) — f,% form an operator S; with

F, = S/(F,) (1.14)

which also has a simple matrix representation. Appli-
cation of @ to F, gives the operator equation for
F-selection:

Fopr = O(Fy) = D(S(F,)) = @*S,(F,) . (1.15)

Viability selection (V-selection) means that the
probabilities of survival of fresh zygotesuntilmaturity
depend on their genotypes and are assumed to be in
the proportions wi!:w®:...:w®, Starting with
adult genotypes in the parental generation (F,) after
V-selection has terminated in the n-th generation,
we have F, —> F,., according to (1.10). Now S, is
to be applied to F,,;. The result is the operator
equation for V-selection

Fouyr = Sy(Fuy1) = S,*@(F,) . (1.10)
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Apart from the labels fand v of the selection opera-
tors, (1.15) and (1.16) differ only in the order of S
and @. This difference, however, is essential, since
in general the exchange of two operators produces
quite different results. If @ and S are matrices, this
follows simply from the noncommutativity of matrix
multiplication.

The meaning of gametic selection is that parental
individuals of the various genotypes contribute the
same numbers of gametes, but that the efficiency of
a single gamete depends on its genotype. Let the
chance of a gamete of the j-th type to be successful
be proportional to w{. This is equivalent to replacing
the gametic frequencies gi¥) by
(1.17)

g;b(f) —_ wg) gﬁl)/ﬁ

., Wwhere w, =

7
3wl e)
A

before applying Z according to (1.9). An operator S,
is established by these equations and

G, = S,(G,) {1.18)
from which
Fupr = Z(Gy) = Z(S,(G,)) = Z(S{I'(F,)) =
=Z*SxI'(F,) . (1.19)

It is seen that the order of succession of the various
operators is important. With regard to the descrip-
tion of selection processes it is therefore essential,
which phase of the generation cycle is observed.
This applies even more if different components of
selection are expected to operate. Strictly speaking,
F, and F,, should be supplied with an index for
the point of time of inspection. Let F{?) and F%)
be the frequency vectors just after birth of the zygotes
in generatlon n and # - 1 respectively, and F{!) and
F®)  the same vectors at maturity (just before mat-

u-+1
ing). If the selection operators are the same in both

generations, the following equations hold for V-
selection:
FN = S (Fo)y, (1.20.a)
FO = S(FP.), (1.20.b)
FO = DFD). (1.20.¢)
For F-selection we have only
F=FO, F =Fo, (1.21)

With these relations in mind the following operator
equations are easily seen to be true

FO = 0% S,(F), (1.22.a)

F, = Sx*xo(F)), (1.22.b)

FQl = Fl, = ®Ox S(FY) = &% S,(F?), (1.23)
n+1 = @*§5;x S, (FOy, (1.24.a)

il = S, @+ S(FY) (1.24.b)
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These equations remain correct if, in addition,
gametic selection is operating; then @ = Z+S,* I
Furthermore, the case

Fuiy = 23S I'(F,) (1.25)

should be considered separately. With this all selec-
tion models which make sense when use is made of
F,, Fop,G,, ®,Z,1; S,, S;, and S; are enumerated.
Among these the model (1.24.a) is of special interest,
since both fitness components involved may be con-
centrated to a total fitness by simple matrix multipli-
cation. F{0) = @+5;#S,(F?) then reduces to the type
(1.22.a): Fupq = @S, (F,).

The operators @, Z, and [ are the essence of all
mating and recombination modalities which may be
described by algebraic equations. In contrast, the
operators S,, S;, and S, are parameters by nature,
while F, and F,,,, are observable entities.

3. Determination of Fitnesses

We now face the problem of making statements
about S,, S, and S, from merely the observation
of ¥, and F,, (at defined periods of the generation
cycle) and from certain assumptions about I" and Z.
This is equivalent to solving one of the systems of
equations (1.22.a) to (1.24.b) for the unknown ele-
ments of one (or more than one) S-matrix. This
problem has in general no solution. @ consists of
equations together with (1.3.b). But one S,- or S;-
matrix already contains £ unknowns which are line-
arly related. For example, the system (1.24.b) has
2 k — 2 unknowns and therefore no solution of practi-
cal value exists. This is more than ever true if G-
selection is present along with V- and/or F-selection.

A unique solution will be available, if one can be
sure that at most one component of selection is pre-
sent (unless case (1.25) is under question, where IF-
and V-selection are condensed to a combined fitness).
Even if this is given, it must be known which
component is involved, since F,— F,;; may be
accomplished in many different ways. F, and F, ;4
alone give no indication which sort (or sorts) of selec-
tion is involved. In other words, it must be clear
which of the operator equations given above is to
be chosen as the appropriate model. Applying an
inadequate model would possibly lead to a “solution”’
which is of course numerically correct but at the same
time would misinterprete the observed transition
F” — Fn_|,1.

In this situation there remain three types of model:

Fupy = @*S(F), (1.26)

where S = S (see (1.15)) or S = S, (see (1.22.a)) or
S — S/v

Fﬂ-{-—i - S*¢(Fn) N (127)
where S = S, (see (1.16)), and
Fppy = Z# Sy I'(E,) . (1.28)
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The properties of the solutions of these systems of
equations depend on the nature of @, I', and 7
respectively and will be different in the various cases.
Some of the possible situations are examined in more
detail in the subsequent paragraphs.

4. Selection of Type F, ;= @=*S(F,)

F-selection according to (1.15) and V-selection
according to (1.22.a), i.e. V-selection under the eondi-
tion that genotype frequencies are observed between
reproduction and beginning of selection, are special
cases of this type.

a) Panmixia, one locus. Tor simplification the

frequencies of

genotypes AA Aa aa
are now represented by (x,, Ve 2 =F,,
(wa: Vut1, Zn+1) - 1"11»}1 .
Their fitnesses be w, w, =1 1w,.
After selection we have
Fu = S(E):
Xy =2y g 2y =iy
PSS Ky Y= n—@n,[(ug)
where w=1x,w, + vy, + 2,©,. l

F’ produces the vector of gametic frequencies

G, = ()
pn(A) = }’,',, + ’;yi’t = % (xn Wy -+ ‘%‘yn)’

’ 1 1
qtl(a‘) =2 + ?y” - Z; (Zn w, + _yn)

and from this we obtain
Fn+1 - Z(Gn) M
2 1 1 2
Xni1 = Pau = 2 (xn w, -+ 'i_yn) »

1 1 1
Y41 = 2 j)n gy = ﬁ (x,, Wy '}' ?yn) (Zn w, + ?yn) s

1 1 \2
Znt1 :gz :ﬁ(‘zn wz+‘2‘yn) :
With regard to (1.29) this appears to be a system
of quadratic equations in the unknowns w, and w,
with the following pattern of coefficients

Wy w3 w, W,

Wy

2
— 2y Xn1 — 2 Xy By Xt

28 (1 —2441) — 2%, 2, Zntq

Xy Yo (1 — 2 Znyy)
- z;z‘y”-H an Zy (1 —yn'H) Xy Vn (1 - 2y”+1) 2y Yn (1 - Zyn+1) yi (yn“ -

—2 X Y Znt1
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Since these equations sum up to zero, only two
of them are independent. Consider (g;) and (g,),
which correspond to conic sectionsin the w,, w,-plane;
but each of them is degenerated to a pair of straight
lines (with a real point of intersection). This is easily
realized from the vanishing determinants of coeffi-
cients of (g;) and (g;}. Furthermore in both cases the
2 X 2-minors of the coefficients of the quadratic terms
are negative. (g;) as well as (g;) is therefore the pro-
duct of two linear factors, which are found to be

Ly L=
|ixn (1 '}" l/&;l:) W, 'I— Zn V:\’TH w: +)’n (*; + ;/EL_{:)] X

[xn (1 - V/;n_&;) Wy— 2y ‘/m wz+y71 (%'— l’/a_i)] =0,
(1.31.a)
Loy~ Lyy=

[%ﬁﬁwﬁwmwwﬂﬂwﬂw4é+ﬁﬁﬂx

S J— 1 ——
[* %l Znia @y A2, (1 — Y 20 14) wz+yn(z“ l/zn»u)] =0.

(1.31.b)
Both pairs of straight lines intersect in one and the
same point with coordinates

*__ In

Yn
wx == » -
2

£
W, = — -——.
‘ 2 2zy

No point with coordinates w, > 0, w, > 0 will
satisfy the equations Ly or L,;; the corresponding
straight lines therefore do not pass through the
(+-+)-quadrat of the w,, w,-plane, L,, and L,,, on
the other hand, enter this quadrant from (w}, »f).
Moreover, they coincide with one another and have
the same equation

Xn 1/2’7;1 Wy — %, l/;C;;: W, - Y, (é— — V’TH) =90.
(1.32)
All pairs of w,, w,, which are positive and satisfy
(1.32) solve the problem. Unless /%, = %ory” =0,

there is an infinite set of solutions which are essentially
different, since L,, (and L,,) does not cross the origin.

If l/x,H_, :% or y, =0 then the ratio w,:w, is
determined from (1.32).

w, right hand

i (e — ) &) 1 W
) (&) ’l

P 1
2y Yu (1 —2 Z"'H) Vi (Z"‘lfl - -4*) (g3) .
(1.30)

— 22, Y, nts

l\”_‘
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It follows that a unique determination of the rela-
tive fitnesses is not available from the model given in
the headline of this chapter. There is an infinite
number of different fitnesses with which one is able
to describe the transition F, — F,., equally well!

Example: F, = (.3, .3, .4), Fuy1 = (16, 48, 36).
With these values (1.32) is given to be 18w, —
— 16w, + 3 == 0. Among the totality of solutions
(with w, = 1) there are, for example

1) w, =1, w, = 1.3125 ,
2) w,=2, w, = 2.4375,
which naturally account for quite different selection

processes, but at the same time produce the same
transition I, = Fyy.

w, =1,
w, =1,

b) Selfing, one Locus. In contrast to the foregoing
result, (1.26) has a unique solution if the population
consists of true selfing individuals. Here F, = S(F,)
such as in (1.29). But
Fupy = Z(F,):

’ 1 Xy wg 1 1/4y
Xppr == Xy '[‘ ‘4'}7;; e TS P / )”s '
1 .
Mupr = >y a;yn ’ : (1 }})
. 1 v anws 1/4 ya
Ap41 == An “’]‘ "4‘ wo— T 'E’v—"’—’ :

These are linear dependent equations for w, and w,

1
Bt — 1) By, 1 X1 2,0, + )y (x,, = *4’) =0 (a),

1
Ynp1 X, Wy -+ Vuq1 2, W, + Yy (yn i1 ,)_) = (b),
1
Ent1 Ny, Wy %‘ (Zn-i"l - 1) Wy _l_yn (Z"'H - ‘4‘) =0 ((.')'

(1.34)

From two of them we get the unique solution
(with w, = 1)

&xn+17-—71[23/n+‘!

w :&ZWH — 1/2;vn+1
Xn 2 Vi1

’ z 2y 2 Yni

(1.35)
5. Selection of Type F, |, = Z+S+I'(F,)

‘Zﬂx ==

a) Panmixia. F, = (x,, V., %) »

Go= T(F,): pald) =50t 5 2ns 9a(@) = 50t 5 3 -

Let the fitnesses of gamete types A and @ be in the
proportion 1: w. Withw = p + w, ¢, we get

7 ~ ’ 1 , w
Cn = SCo): Pn= 5 bns Gn =G5 >
Fuao = 2(6);

‘9 )

X == f)n y Yaq1 = 2,’/)n In »
)

g1 = Gu .

If the last set of equations is written down in
detail, we have three quadratic equations for the one
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unknown w:

Xn41 qi w? _*_ 2 Y1 /)n g W —1* P;Zl (x'PH - 1) =0,
(1.36.a)
yn+l qu w‘z Jl_ 2 (ynql—i - 1) ])n qn w + yn+1 1572» =0 ’
(1.36.b)
(1;21 (Zn.l [ 1) w? + 2 &ny l;/’n g, @ 1= Zu 1 Pi = 0.
(1.30.c)
Each of them is solved by the common root
o @qrwl—i
Y g paie (137)

since Pyt = pn. This w gives the unique solution
of the problem.

b) Selfing. We assume that only pollen is subjected
to selection. Titnesses of types 4 and a4 again are
as 1 : w, meaning that fertilization by 4- and a-pollen
occurs in proportion 1:w. The composition of the
offspring of Aa-parents is as follows

Q X 3
1 1 w
|30 @] [t 4§ @] =
1 ) 1 -} w , L W
- Vu(dd) 1 v (da) - 4 Yalad) .
Therefore
- 1 NI
,IHH' X1 = w (xn f 4}”)’ l
1+ w
Vapt 5= 4TE Yo s (1 38)
2) 1
By = — (4;1 ‘I' ‘4‘"3’7;) * J
where

|- w

o 1
w =%, + - 2*"’3’” +w By == /)n 4w 9y -
If F, and F, ., are given, we have three linear
equations for one unknown w

1
Wy Xntt + f’n Xn41 + Z'yn - j)n =0, (1393)

w (qn M = l _Vn) 4’ /)n Va1 — '1’}'1; =0, (139b)
1
w (q,, i R q,,) A P dnar =0, (1.39.0)

which have a sum of zero. Thus from two of them,
(a) and (c) for example, w may be determined if and
only if

1 1
buGn Yt — 3 Y (1 = Pudnit = Gutnis — y,,) =0.

(1.40)

If F,4 arises from F, by selfing and if selection
is acting upon pollen, (1.40) is always satisfied; and
F,4 can result from F, under selfing with pollen
selection only if this condition holds. (1.40) may
therefore be used as a test criterion for this condition.
1f (1.40) holds, the determination of w from one of
the equations (1.39) is unique.
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6. Selection of Type F, ;= S+«® (F,)

Zygotic viability selection (S = §,) is of this type,
if genotype frequencies are observed just before
reproduction and after selection has been brought
to an end. The following exposition is restricted to
this model and some of its specializations. Returning
to the notation of (1.12), these equations now have

the simple form
w;

Theovet. Appl. Genetics

More simply, ¢ =1, and

i
Pi

A —
ul/

(1.44.a)

The following considerations are based on this
definition of relative fitness. The variablew =3 w; ¢;
is called the mean fitness. It is w = ¢ under (1.43)
and w = @ /f") under (1.44).

In case of mixed selfing and random mating with one

i, = ‘;"P(f,(f): P locus (two alleles) the expressions for ¢, ¢,, and ¢y
(i =1 ) (1.41) are as follows
where =0 L) (1) (2)
o= Swig PRI iRV BRI f) |
Here w; is the fitness of the i-th genotype. If F,, , — > t( 41 (2)) ( @ L L (2)) ~ 't
and Iy, are known, as supposed, (1.41) together ve WA FIE T 5 12)+ 3 f” ’
with (1.41.a) is a system of % linear homogeneous  _ ,fq5 | 1 ,5)\2 G L
equations in the w; ¥s = t(fn t 'Z'fn ) + (1 =1 (fn + z‘fn ) : J
U8, — 1) guey + 10, e e =0, (1.45)
@) w @ ) g, wy b - - w _ where ¢ is the rate of out-
fn+1 P W + (fn-H ) P2 W2 - fn.; 1 Pr Wy 0, (142) CI‘OSSiIlg.
J 1(1/? 1 1% " j ni1 P2 W2 (-/’(1/4} e =0,
Let 9 be the matrix of coefficients. 1f ¢; 4= 0 for Zusammenfassung

all 7, then the rank of 9 is £ — 1. If ¢; = 0 for some7,
(1.42) has no solution except w; = 0. ¢, = 0 means that
the expected frequency of the ¢-th genotypein genera-
tion % -- 1 equals zero, provided there is no selection.
This can happen under some very special conditions,
which may be regarded as degenerate. This will
therefore be excluded lhere. Then, if ¢; &= 0, there
exists a non-vanishing vector (wy, . . ., wy) of fitnesses
satisfying (1.42). But if ¢ is an arbitrary constant,
then (cw;,...,cuwy) is also a solution of (1.42).
Therefore, the fitnesses are determined up to a con-
stant factor only.

It follows that, from knowledge of genotype fre-
quencies of two subsequent generations, only the
ratios of fitnesses can be determined, i.e. the relative
fitnesses. This is evident because, if the probabilities
of the various genotypes to survive are multiplied
by the same factor, the proportions of surviving geno-
types remain the same.

Because of {1.41) the general solution of (1.42) has
the form

w; = f"“ (G=1,..., %  (1.43)

The relative htness of a genotype is, therefore
proportional to the ratio of the observed frequency
in generation # - 1 to that frequency which is
expected when selection is absent. ¢ may be chosen
at will. Sometimes it is useful to take the relative
fitness of a certain genotype (heterozygotes or double
heterozygotes) as 1. Let this genotype be the A-th
one. Then w, = 1, and ¢ = gah/f , from which

/ ‘n’ll Th
TR
@i Z'J’r 1

W, = (1.44)

T

IFiir  Reproduktions- und Selektionsvorgdnge in
Populationen diploider Organismen mit diskreter
Generationenfolge wird eine algebraische Darstellung
gegeben. Das Interesse konzentriert sich dabei auf die
T'rage, unter welchen Bedingungen die Selektions-
koeffizienten der verschiedenen Genotypen aus den
Genotypenfrequenzen zweier aufeinander folgender
Generationen allein bestimmt werden kénnen. Im
zweiten Teil der Arbeit, der spiter veroffentlicht wird,
werden die statistischen Eigenschaften einer spe-
ziellen, von HavmMaAN aufgestellten Schitzfunktion
untersucht. Hierbei werden Konfidenzintervalle und
Signifikanzteste fiir Fitnesswerte betrachtet und mit
Hilfe von Simulationsstudien gepriift.
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