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On the Determination of Relative Fitness from Frequencies 
of Genotypes in Subsequent Generations* 

Part I. Algebra of  Reproduction and Selection in Populations with Discrete Generations 
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Ins t i tu t  fiir Biologie, Lehrstuhl  fiir Genetik, der Universit~it Ttibingen 
und Bundesforschungsanstal t  ftir Viruskrankhei ten der Tiere, Tiibingen (GI~R) 

Summary. An algebraic treatment of reproduction and selection processes in populations of diploids with discrete 
generation cycles is presented. The main objective was a determination of the conditions under which the selection 
coefficients for the various genotypes can be determined solely on the basis of known frequencies of genotypes in 
two subsequent generations. In part  two, to be published later, the statistical properties of a special fitness estima- 
tor, proposed by Hayman, are considered. Confidence intervals and tests of significance concerning hypotheses 
about fitness are established and checked by computer simulation studies. 

Introduction 

This paper  was s t imulated by  extensive studies in 
predominant ly  selfpollinated species b y  Allard and 
his coworkers. These studies were concerned with 
generat ion-by-generation estimates of two kinds of 
parameters  whose values have implications concern- 
ing population structure and the evolutionary poten- 
tial of the populations under question. The first is 
tile proportion of selfing versus outcrossing, the second 
are the relative viabilities of the two homozygotes and 
the heterozygote at a diallelic locus. 

The experimental  basis for this task was obtained 
by  annual censuses of frequencies of the three geno- 
types together  with a separate experiment  for the 
estimation of the proportion of selfing, which is, 
however, not independent in the statistical sense, 
from the censuses. 

The present author  took special interest in two 
types of problems. The first is concerned with the 
inherent logic of inference of experiments  such as 
Allard's. The total  process leading from the genotype 
composition in one generation to tha t  in the next  
one is a sequence of different reproductive and selec- 
t ive componental  processes. A given pair  of arrays 
of genotype frequencies in the parental  and offspring 
generation can - -  in general --  be explained by  quite 
different hypotheses about  what  has happened be- 
tween the censuses, if further  conditions cannot be 
assumed to he satisfied. Unfor tunate ly  the censuses 
alone give no indication with respect to this. In  other 
words: it doesn ' t  seem to be possible to prove the 
conditions for the est imation procedure and, at  the 
same time, to est imate the parameters  from the body 
of census da ta  alone. 

* Gekiirzte Fassung einer der Mathem.-naturwiss. 
Fakult/it der Universit~t Tiibingen eingereichten Disser- 
tationsschrift (Tell I). 

A further point of interest in the same context  is, 
tha t  the estimation of outcrossing presupposes, tha t  
fitnesses, which just are under question, satisfy cer- 
tain conditions. On the other hand, the estimation 
of fitnesses presupposes that ,  for example,  the amount  
of outcrossing is the same for each genotype. This 
last condition is certainly not satisfied in general 
(Harding and Tucker, t964). 

In part  one of this paper  an algebraic representa- 
tion of reproductive and selective processes is given 
by  means of operators, which make the t ransforma- 
tion process for the arrays of genotype frequencies 
more transparent .  The problem of whether  unique 
inference can be drawn on the type of selection force 
at work then reduces to considering the algebraic 
properties of the resulting systems of linear or non- 
linear equations. 

In  par t  two the statistical properties of the fitness 
estimator,  which is due to H a y m a n  (t953), is consider- 
ed in more detail. This par t  will be published in 
a subsequent paper. Especially the power functions 
of some tests of significance for the null hypotheses, 
tha t  the fitnesses of the genotypes do not differ, are 
evaluated by  computer  simulations. Furthermore,  
confidence intervals are established for fitnesses. 

I. Genotypic Vectors and Operators 
of Reproduction 

Consider two consecutive discrete generations n 
and n + t of an infinite population of diploids. The 
frequencies of genotypes (with respect to any  number  
of loci) are represented by  the genotype vectors 

F ,  = ~ r I ' ) ,  rt~), , , . . , f ~ * ) ]  (t.1) 
and 

F , , §  : r r . )  , r(2) f ( k )  I ( t . 2 )  
L J  n §  I J l l §  ~' �9 . �9 , d l l + l  J 
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where 
k k 

a) ~ , f ( i ) =  I and b) ~ f ( i . l  i ~ -  t .  (1.3) 
i - - t  4 - - 1  

We have  k = 3 for one locus and k = 10 or 9 for two loci 
according to whe ther  or not  a t t r ac t ion  and  repulsion 
he te rozygotes  are considered different  classes. Some- 
t imes the frequencies of genotypes  will be labeled by  
le t ters  ins tead of integers,  such as f~*), f(,v), f(fl. 

The vec tor  F ,  corresponds  to a point  in a space of k 
dimensions,  the  posit ion of which is character ized b y  
the condit ion f(fl >_ 0 (i = 1 . . . . .  k) toge ther  wi th  
(l.3.a). Thus  this poin t  is s i tua ted  in the (k - -  t ) -  
d imensional  hyperp lane  with  equa t ion  (l.3.a), in 
par t icu lar  in the  closed region f(~l >_ 0 of t h a t  plane.  
In  the s implest  case (one locus, two alleles: k = 3) 
this is the set of points  inside of an equi la tera l  t r iangle 
(including its boundary) ,  the edges of which coincide 
wi th  the points  (1, O, 0), (O, t ,  0), (0, O, t) of a three-  
dimensional  car tes ian  coordinate  sys tem.  F,,~I cor- 
responds  to a poin t  in the  same set. 

The  t rans i t ion  f rom genera t ion  n to genera t ion  
n + I m a y  be considered to be composed  of two steps. 
In  the  first a vec tor  of game te  geno types  

G. = [g~]), g(~) . . . . .  gl~)] (1.4) 

can be der ived f rom F n. We have  r =  2 i n  the  one 
locus case, r = 4 for two loci, and r = 2 t for t loci, 
each with two alleles. E v e r y  g2") is a funct ion of some 
of the f(i) and possibly  of some fur ther  p a r a m e t e r s  Oi 
(for ins tance  the  f requency  of recombina t ion  in case 
of two or more  loci). In 1 .(i) genera  ~, is therefore  of the 
form 

g2) = g~/)(f(,) . . . . .  f,~k); 0 ,  02 . . . .  ) .  (1.5) 
( j  = t ,  2 . . . . .  r)  

I t  is 
I" 

a) - - ( i )  (1.6) 2 ,  g,i - -  I = 0  and b) g~i)_>O. 
i=1 

This  sys tem of equat ions  (1.5) m a y  be regarded  as 
an opera to r  F,  which, when appl ied to F,,, produces  
G,: 

G~ = / ' ( F , ) .  (/.7) 

G, corresponds to a point  in the  (r - -  l ) -d imens iona l  
hyperp lane  (t.6.a) which in tu rn  is pa r t  of a space 
of r dimensions.  The  effect o f / '  is therefore  to m a p  
a (k - -  1)-dimensional  set of points  into a ( r -  1)- 
d imensional  set. 

The  second s tep is the  t rans i t ion  f rom G,, to F ,+ I .  
E v e r y  f ( ' ~  is a funct ion of some gO .) and  possibly  of 
some p a r a m e t e r s  ,9~ : 

s = A ~ , ( g ( ;  ) . . . . .  g~ ) ;  o ; ,  o ;  . . . .  ) ( l . s )  

( i  = i ,  2 . . . . .  k ) .  

This sys tem of equat ions  m a y  be regarded  as ano the r  
opera to r  Z, which, when appl ied to G,, produces  
Fn+l : 

F.+~ = Z(G~) . (1.9) 

The  effect of Z is to m a p  the (r --  l ) -d imens ional  set  
of points,  in which G, is contained,  into the (k - -  1)- 
d imensional  set wi th  F,+~. Altogether  we have  

F , ~ I  = Z * F ( F , )  = qb(F~), (1.10) 

where the  symbol ic  " m u l t i p l i c a t i o n "  means  consecu- 
t ive execut ion of two opera tors  (from right  to left). 

The  effect of q ) = Z * F  is thus  to m a p  the original 
set of points  into itself. In  detail  the  sys tem of equa-  
t ions F,+~ = q)(F,) m a y  be wr i t t en  as 

f,(') = ~vi(f,('), ,f~(*); 01, 02, .) (1.11) 
~ 4 1  . . . . .  

(i = 1 . . . . .  k ) .  

I f  selection is present ,  some of the Oi m a y  be declared 
as fitnesses. To  dist inguish these f rom o ther  para-  
meters ,  the  i - th  fi tness is symbol ized  b y  w (i). Thus  

f,(,{l, = vi(f~, ') . . . . .  f(k); w(,) . . . . .  w(k); 0,, 02 . . . .  ) .  
(I .12) 

I t  will be useful to associate different  opera tors  wi th  
different  componen t s  of selection or fitness. Selection 
m a y  act  upon  zygotes  or gametes  or both .  In  any  
case it should be not iced which t ra i t s  are affected b y  
selection. Wi th  zygot ic  selection, for example ,  the 
v iab i l i ty  of the zygote  unti l  m a t u r i t y  and/or  fer t i l i ty  
of the m a t u r e  zygote  m a y  be considered.  

2. Selection Operators 

When  selection acts  upon  fert i l i ty ,  the fi tnesses of 
the  different  gem)types  (mature)  are labeled with  the 
index f .  I t  is assumed t h a t  the  individuals  of the  
var ious  geno types  cont r ibu te  different  mean  number s  
of gametes  and  tha t  these mean  number s  are in the  
p ropor t ions  w~t/: w9 2/" �9 �9 �9 : w~ k/. This  is equiva len t  to 
replacing the  ~i l  b y  

f~(i) = wgOf(O/w!, where ~ / =  Z w(0~(')t J,~ " (1.13) 

The  f~(i) m a y  be regarded  as "e f fec t ive"  geno type  
frequencies,  w i t h  the individuals  of any  geno type  
now con t r ibu t ing  the  same number s  of gametes .  The  
subs t i tu t ions  f (O-+  f~(O form an opera to r  S t with 

F;, = S/(Fn) (1.14) 

which also has a s imple ma t r i x  representa t ion .  Appli-  
cat ion of 4) to F~ gives the opera to r  equa t ion  for 
F-select ion : 

F,,+I = 05(Fs = q)(SI(F,))  = ct)*SI(F,, ) . (I . IS)  

Viabi l i t y  selection (V-selection) means  t h a t  the  
probabi l i t ies  of survival  of fresh zygotes  unt i l  m a t u r i t y  
depend on their  geno types  and are assumed to be in 
the  p ropor t ions  w(0: w(fi: �9 �9 �9 : w~). S ta r t ing  with  
adul t  geno types  in the pa ren ta l  genera t ion  (F~) af ter  
V-selection has  t e rmina t ed  in the  n - th  generat ion,  
we have  F~--~ F~+t according to (1.t0). Now S, is 
to be appl ied to F~+I. The  result  is the  opera to r  
equa t ion  for V-selection 

F~+I = S,(F~+I) = Sv*~(F~) . (1.t6) 
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Apart  from the l abe l s fand  v of the selection opera- 
tors, (1.t5) and (1.t6) differ only in the order of S 
and q}. This difference, however, is essential, since 
in general the exchange of two operators produces 
quite different results. If q~ and S are matrices, this 
follows simply from the noncommutat iv i ty  of matr ix  
multiplication. 

The meaning of game t i c  select ion is that  parental 
individuals of the various genotypes contribute the 
same numbers of gametes, but  that  the efficiency of 
a single gamete depends on its genotype. Let the 
chance of a gamete of the j--th type to be successful 
be proportional to w~il. This is equivalent to replacing 
the gametic frequencies g~) by 

g'~(i) = w(i) ~(J)l~ where ~g w~') g~') (1.17) 
g e, n l  g ,  j = l  

before applyingZ according to (1.9). An operator Sg 
is established by  these equations and 

Cg, = &(G,,) , (1.18) 

from which 

F,,~, = Z(C,,;) = Z(Sg(G) ) = Z(G(V~IF , ! ) )  = 

= Z *  Sg* F ( F , )  . (1.t9) 

I t  is seen that  the order of succession of the various 
operators is important.  With regard to the descrip- 
tion of selection processes it is therefore essential, 
which phase of the generation cycle is observed. 
This applies even more if different components of 
selection are expected to operate. Strictly speaking, 
F n and F~+I should be supplied with an index for 
the point of time of inspection. Let  F(~ ~ and F/O) 

n + l  

be the frequency vectors just after birth of the zygotes 
in generation n and n + I respectively, and F~ 1) and 
FI]~+, the same vectors at matur i ty  (just before mat- 
ing). If the selection operators are the same in both 
generations, the following equations hold for V- 
select ion : 

F (') = S~(F~)) (l.20.a) 

F(1) ~ (o) = G ( F  ~,) ( l . 20 .b )  n + t 

= ( 1 . 2 0 . c )  ~-1-1 

For F-se lec t ion  we have only 

I;~) = F~ ~ F m  = F(Ol (t.21) 
' n [-1 n - J l  " 

Vv'ith these relations in mind the following operator 
equations are easily seen to be true 

F(0~t = ~ *  S~(F(~~ , (t.22.a) 

l'+,~0). = S~* qS(F}])) , (I .22.b) 

F(O). = F(I) = q ) .  St(F(,,,)) = ~ .  SI(F~O)) (1.23) n + 1  n + l  

F(~ = ~ *  SI* Sv(F~~ , (t.24.a) 

~'~+, = Sv* ~ *  SI(F~])) . (1.24.b) 

These equations remain correct if, in addition, 
gametic selection is operating; then ~b = Z* Sg*/'.  
Furthermore,  the case 

F,,+, ---- Z* Sg*/'(F~) (1.25) 

should be considered separately. With this all selec- 
tion models which make sense when use is made of 
F,,,  F.+~, G, ; q~, Z, !"; S~, Sg, and S t are enumerated. 
Among these the model (1.24.a) is of special interest, 
since both  fitness components involved may be con- 
centrated to a total  fitness by simple matr ix multipli- 
cation. F~~ = q~*SI*S~(F~~ ) then reduces to the type 

(t.22.a): Fn+,  ~- ~ * S l v ( F n ) .  
The operators ~,  Z, and / '  are the essence of all 

mating and recombination modalities which may be 
described by algebraic equations. In contrast, the 
operators S~, S t, and Sg are parameters by  nature, 
while F ,  and F,,+~ are observable entities. 

3- Determinat ion  of  Fitnesses 

We now face the problem of making s ta tements  
about S v, S/, and Sg from merely the observation 
of F~ and F~+I (at defined periods of the generation 
cycle) and from certain assumptions about F and Z. 
This is equivalent to solving one of the systems of 
equations (1.22.a) to (t.24.b) for the unknown ele- 
ments of one (or more than one) S-matrix. This 
problem has in general no solution, q~ consists of k 
equations together with (1.3.b). But  one Sv- or S/- 
matrix already contains k unknowns which are line- 
arly related. For example, the system (t.24.b) has 
2 k -- 2 unknowns and therefore no solution of practi- 
cal value exists. This is more than ever true if G- 
selection is present along with V- and/or F-selection. 

A unique solution will be available, if one can be 
sure that  at most one component of selection is pre- 
sent (unless case (1.25) is under question, where F-  
and V-selection are condensed to a combined fitness). 
Even if this is given, it must be known which 
component is involved, since F~--> F~+t may  be 
accomplished in many different ways. F~ and F~+I 
alone give no indication which sort (or sorts) of selec- 
tion is involved. In other words, it must be clear 
which of the operator equations given above is to 
be chosen as the appropriate model. Applying an 
inadequate model would possibly lead to a "solution" 
which is of course numerically correct but  at the same 
time would misinterprete the observed transition 
F ,  - ~  Fnq 1. 

In this situation there remain three types of model : 

F,~+, = qb. S ( F , )  , (t .26) 

where S = S I (see (1.t 5)) or S = S~ (see (1.22.a)) or 
S = SI ,  ,. 

F,+,  = S* c I ) ( G ) ,  (t.27) 

where S = S~ (see (t.16)), and 

F,,+I = Z * S g * F ( F , , )  . (1.28) 
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The properties of the solutions of these systems of 
equations depend on the nature of qb, / ' ,  and Z 
respectively and will be different in the various cases. 
Some of the possible situations are examined in more 
detail in the subsequent paragraphs. 

4" Selection of Type  F,+I  = ~ *  S(F , , )  

F-selection according to (1.t5) and V-selection 
according to (t.22.a), i.e. V-selection under the condi- 
tion that  genotype frequencies are observed between 
reproduction and beginning of selection, are special 
cases of this type. 

a) P a m n i x i a ,  one locus. For simplification the 
frequencies of 

genotypes A A  A a  aa 

are now represented by (x n, y~, z~) = F , , ,  

(x,,~,, y,,+,, z , , + d -  F,,-I~. 
Their fitnesses be w~ wy = t w~. 

After selection we have 

Vs = S(F,):  

, ZVx , l W x 

x . = - ~ x , ~ ,  y , ~ =  g y , , ,  z ; =  g z , , ,  [ (1.29) 

where ~ = x . w . + y . + z . w ~  j 

F '  produces the vector of gametic frequencies 

G. = F(F;,) : 

, ,  ,( 
p,~(A) = x;  + g y , ,  = ~ x,, w .  + -2-y . , 

, ,  1( ~ ) 
q,,(a) = z;, + y y , ,  = 7 z,~ w,  + - s  

and from this we obtain 

F.+~ = Z(G.):  

1 2 

z.+, = q~. = ~ z~ w. + ~- y,, . 

With regard to (t.29) this appears to be a system 
of quadratic equations in the unknowns w. and w, 
with the following pat tern of coefficients 

x ~ (1 x . + , )  z ~ n - -  - -  n X n + ~  - -  2 X  n z  n x n + ~  

2 2 --  x,, yn+t - -  z,, yn+~ 

- x~. z . + ~  z~. (I - z . + , )  

Since these equations sum up to zero, only two 
of them are independent. Consider (gx) and (g3), 
which correspond to conic sections in the w,, w,-plane; 
but  each of them is degenerated to a pair of straight 
lines (with a real point of intersection). This is easily 
realized from the vanishing determinants of coeffi- 
cients of (gl) and (ga). Furthermore in both cases the 
2 X 2-minors of the coefficients of the quadratic terms 
are negative. (gl) as well as (g3) is therefore the pro- 
duct of two linear factors, which are found to be 

L i t "  L12 

0.3~.a)  

L21 " 1-22 ~ 

[ J -  (; )] 

(t.31.b) 

Both pairs of straight lines intersect in one and the 
same point with coordinates 

2 xn ' 2 zn 

No point with coordinates w~ > 0, w. > 0 will 
satisfy the equations L n or L21; the corresponding 
straight lines therefore do not pass through the 
( + + ) - q u a d r a t  of the we, w,-plane. L~2 and L2~, on 
the other hand, enter this quadrant  from (w*, w*). 
Moreover, they coincide with one another and have 
the same equation 

/ 

(132) 

All pairs of w,, w~, which are positive and satisfy 
1 

(1.32) solve the problem. Unless/x,+~ = ~ o r y  n = O, 

there is an infinite set of solutions which are essentially 
different, since L12 (and L22 ) does not cross tile origin. 

1 
If [/Xn+~ = ~ - o r  y,~ = 0 then the ratio w~: w~ is 

determined from (t.32). 

right hand 

x . y .  ( 1  - -  2 xn+t) 

2 X n Z n ( t  - - Y , , H )  xnY,~(1 -- 2)'~+I) 

W z 

- -  2 z , ,  3 G  x .  + , 

z.y~ (1 -- 2y~+~) 

z,,y~ (1 -- 2 znqt) - -  2 x n z n Zn+~ --  2 x n y  n z,~+l 

y (xn+,-4)/gll, / 

( 1 . 3 o )  
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I t  follows tha t  a unique de te rmina t ion  of the rela- 
t ive fitnesses is no t  available f rom the model  given in 
the headline of this chapter .  There  is an infinite 
number  of different fitnesses with which one is able 
to describe the t ransi t ion F , - ->  F , + t  equal ly well! 

Example :  F,, = (.3, .3, .4), F , ~ ,  = (.t6, 48, 36). 
Wi th  these values (1.32) is given to be 1 8 w , -  
--  16 w= + 3 = 0. Among  the to ta l i ty  of solutions 
(with wy = 1) there are, for example 

I) w , =  t ,  w~=: 1 ,  w,--- 1.3125, 

2) w , = 2 ,  w y =  1 ,  w , = 2 . 4 3 7 5 ,  

which na tu ra l ly  account  for quite different selection 
processes, bu t  at  the same t ime produce the same 
t ransi t ion F , - ~  F ,+ t .  

b) Selfing, one Locus. In  cont ras t  to  the foregoing 
result,  (1.26) has a unique solut ion if the popula t ion  
consists of t rue selfing individuals.  Here F~ = S(F,)  
such as in (t.29). Bu t  

F , + ,  = Z(F;)  : 

l , ,  .V,~Wz i 1/43',~ ] 
X,, I~ --  a:,'~ -1- -4- 3 ,, ~ , 

I I I 
y , , - t =  ~- wy , , ,  f (1.33) 

, t , z,~ w~ -I- I/4 3'~ I 
z~+, = z,,-1- -4-Y. --  w " 

/ 

These are linear dependent  equat ions  for w, and w:, 

(Xn+i-- l )X , ,Wx+ X,,i. l Z n W ~ @ , ' , , ( x ~ , - -  '4 ) : 

Y,, t~ x,, w;, + Y . - t ,  ,z,, % + y,,  ,, 11 - 2 ..... 0 

zn+ , xn wx + (z,>, , - -  l ) z,,wz-l- yn(Znt-, -- -14- ) = 

o (a), I 

(b), I f 
I 

o (<O.J 
(~.34) 

F r o m  two of thelu we get  the unique solution 
(with wy = 1) 

Y n X n + t  - t / 2  yj~-t-1 3 ' ~ 2 n q  l - -  l / 2  y n q  l 
W x ~ -  7s z - -  

x ~  2 3 ' n q  1 ' "~n 2 y n  t I 

(~.35) 

5" Select ion o f  T y p e  F .  t l = Z * S * I ' ( F , )  

a) Panmix ia .  F,, = (x,,, y , ,  z,) , 

1 t 
G,~ = ......./'(F,,): p n ( A ) = x , + - 2 - y , ,  q~(a) = z ~ + - ~ 3 , , , .  

Let  the fitnesses of gamete  types  A and a be in the 
propor t ion  t : w. Wi th  ~ : p + w, q, we get  

t w 
(;~ .......... = s~(G):  p~ = g p . ,  q~ = ~ q . ,  

F . + ,  = Z ( G ~ ) :  x , , t l - - p ' . " ,  Y.-t, = 2p;~q~, 

z.+,  = q;?'. 
If  the last set of equat ions  is wr i t ten  down in 

detail,  we have three quadra t ic  equat ions  for the one 

unknown w : 

x,~+, q=n u a -J- 2 x,~ I, P,, qn w q- p~ (x,~+, -- l) = 0 ,  
(t.36.a) 

3',,+~ q,] w2 + 2 (y,,~ l t) p .  q,, w + y.+~ p,] = 0 ,  
(1.36.b) 

q?,(z , , t ,  - ' l ) w ~ ' - t  2z,,l,p.q,,w-l-z,,i,pT,=-O. 
(~.36.c) 

Each  of them is solved by  the common  root  

- -  P" q " + '  ( 1 . 3 7 )  w qn pn+l 

since Pn ~t = P;,. This w gives the unique solution 
of the problem. 

b) Sell ing.  We assume tha t  only pollen is subjected 
to selection. Fitnesses of types  A and a again are 
as I : w, meaning  tha t  ferti l ization by  A- and a-pollen 
occurs in propor t ion  t : w. The composi t ion of the  
offspring of Aa-paren t s  is as follows 

? x c~ 

[, ,][:  ] 2 ('~) t -  2- (a) y . ( : l )  @ -2 ~',,(,r -= 

] v . (AA)  t- ~ -t *<'y,,(Aa.) I- 4 y,,(a.) 
" 4 " 

Xnq i ~ w Xn -~- 1 

I + w (~.38)  
Y,, i ~ ~ 4 (0 y ' '  [ w( , )  
z,,t, = ~, z, , - t - -4~, ,  , J 

There fore 

1r i ~ I " 

w z ,  - -  p , ,  I- w q , , .  

where 
1 [ - w  

'~ x.  + 2 Y" -}- 

If  F ,  and 1;,+1 are given, we have three linear 
equat ions  for one unknown w 

1 
w q ,  x , , ' ~ t + p , x , ~ l q - 4 y ~ - - p , , = O ,  (t.39.a) 

( ' )  , . . . .  ~ . . . .  0 (1.39.b) w q,, 3 , ,  i, 4- -y'' ~ p'~ y "  r i 4 - n ' 

( ' ) w q,,z,~t -[- 4-3', - -  q, q- P, ,z , , l l  O, (1.39.c) 

which have a sunl of zero. Thus  from two of them, 
(a) and (c) for example,  w m a y  be determined if and 
only  if 

, (  , )  P,,q,~9',,+~ -i-y,, 1 - - p , , x , , ~ - - q , ~ z , , ~ - - x y , ,  = 0 .  

(I .4o) 
If  F , < t  arises f rom F ,  by  selfing and if selection 

is act ing upon pollen, (1.40) is a lways satisfied; and 
F ,  t_t can result  f rom F~ under  selling with pollen 
selection only if this condit ion holds. (t.40) m a y  
therefore be used as a test  cri terion for this condit ion.  
If  (t.40) holds, the de terminat ion  of w from one of 
the equat ions  (1.39) is unique. 
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6. S e l e c t i o n  o f  T y p e  F . + t  : S *  @ ( F ~ )  

Zygot ic  v i a b i l i t y  select ion (S : S~) is of th is  type ,  
if g e n o t y p e  f requencies  a re  obse rved  ius t  before  
r ep roduc t i on  and  af te r  select ion has  been b rough t  
to an end.  The  fol lowing expos i t ion  is r e s t r i c t ed  to 
th is  mode l  and  some of i ts  spec ia l iza t ions .  R e t u r n i n g  
to  the  n o t a t i o n  of (1.12), these  equa t ions  now have  
the  s imple  form 

f(i) wi 
, ~-1 z ~0" ( ~ ( L {  l ) ,  ' " ' '.,~l,f('~) " 0 1 '  ' ' ' )  

(i = t . . . . .  k) , (t.41) 
where  

:dJ = )2 wi ~'r (t .4t .a) 

Here  w i is the  f i tness  of the  i - th  geno type .  If  F,, 
and  F,+~ are  known,  as supposed,  (1.4t) t oge the r  
wi th  ( l .41.a)  is a sy s t em of k l inear  homogeneous  
equa t ions  in the  wi 

( /~+, - ) ~ ,  ~ + 1 ~ + ,  ~o~ ~ + . . .  + . f ~ + ,  ~ ~,~ = o ,  

(2) w (2) - -  I w _L . . . . .  (2) w - -  0 f ~ + ,  (/J1 1 @ ( f , ,+,  ) ~ 2 , -/ /~ - t ,  % ', - -  , 

. . . . . . . . . . . . . . . . .  , . . . .  

r ! l < l , l j w  1 -I-j}t<l,q.,,w<> . . . . .  + (f,~) ~ . . . .  1) ~.~ wk = 0 . 
J l l - [  �9 . , ' i  �9 c 

L e t  0{ be t h e  m a t r i x  o f  c o e f f i c i e n t s .  I f  ?~i 4= 0 f o r  
all  i, then  the  r ank  of 0{ is k - -  1. I f  7'i = 0 for some i, 
(1.42) has  no so lu t ion  e x c e p t  wi = 0. % = 0 means  t h a t  
t h e  expec ted  f requency  of the  i--th g e n o t y p e  in genera-  
t ion n + 1 equals  zero, p r o v i d e d  there  is no select ion.  
This  can h a p p e n  under  some ve ry  special  condi t ions ,  
which m a y  be r ega rded  as degenera te .  This  will  
therefore  be exc luded  here.  Then,  if % @ 0, there  
exis t s  a non-van i sh ing  vec to r  (we, . . . , w~) of f i tnesses 
sa t i s fy ing  (1.42). But  if c is an a r b i t r a r y  cons tan t ,  
t hen  ( c w a , . . . , c w ~ )  is also a so lu t ion  of (1.42). 
Therefore ,  the  f i tnesses are  de te rnf ined  up  to a con- 
s t a n t  fac tor  only.  

I t  follows t h a t ,  f rom knowledge  of g e n o t y p e  fre- 
quencies  of two subsequen t  genera t ions ,  on ly  the  
ra t ios  of f i tnesses can be de te rmined ,  i.e. the  relative 
I i tnesses.  Tiffs is ev iden t  because,  if the  p robab i l i t i e s  
of the  va r ious  geno types  to  su rv ive  are nml t i p l i ed  
b y  the  same factor ,  t he  p ropor t i ons  of su rv iv ing  geno- 
t y p e s  r ema in  the  same.  

Because  of (1.4t) the  genera l  so lu t ion  of (t .42) has  
t h e  form 

I(i) 
w~ c ~+~-~ (i = 1 . . . . .  k) (1.43) 

The  re l a t ive  f i tness  of a g e n o t y p e  is, therefore  
p r o p o r t i o n a l  to  the  ra t io  of the  obse rved  f r equency  
in gene ra t ion  n + I to t h a t  f r equency  which  is 
expec t ed  when select ion is absen t ,  c m a y  be chosen 
a t  will. Some t imes  i t  is useful  to t ake  the  r e l a t ive  
f i tness  of a cer ta in  g e n o t y p e  (he te rozygotes  or  doub le  
he te rozygotes )  as t .  Le t  th is  g e n o t y p e  be the  h- th  

~(*/., f rom which  one. Then  w~ ~ t ,  and  c = qo~i.#;,+, 
i(1) 

w~ ""+~ ~ (1.44) 
- -  t ( h )  �9 0i t n + l  

More s imply ,  c - -  1, and  
(i) 
n + l  

w i = - - .  (1.44.a) 

The  fol lowing cons idera t ions  are  based  on this  
def in i t ion  of r e l a t ive  f i tness.  The  va r i ab le  ~ = ~  w i q~i 
is cal led the  mean  fi tness.  I t  is ~ = c unde r  (1.43) 
and  ~ = ~ i~(h) unde r  (1.44) " / 'h lJ  n + 1 

In  case of mixed  selling and random mat ing  with  one 
locus (two alleles) the  express ions  for ~ ,  ~.,, and  % 
are  as follows 

~ = t  , 1 +  2 ~ ]  + - ~'> 

~O,). - -  2 t  1) jr_ 2 a n  ] @ fn(2 ) @ f ( 2 )  

ct, a =  l(fj~3) -t--l . f(2'] 2~,~ ] -]- (1 --  t ) (J]  3, + 4 ~ ,  1.-1-r(2'] 

(1.42) 

i 

J 
J 

(I .45) 

where  t is the  r a t e  of ou t -  
crossing.  

Z u s a r n m e n f a s s u n g  

Vtir R e p r o d u k t i o n s -  und  Selekt ionsvorg/ inge  in 
P o p u l a t i o n e n  d ip lo ider  Organ i smen  mi t  d i sk re t e r  
Genera t ionenfo lge  wi rd  eine a lgebra i sche  Dar s t e l l ung  
gegeben.  Das  In te resse  konz e n t r i e r t  sich dabe i  auf  die 
F rage ,  u n t e r  welchen Bed ingungen  die Se lekt ions-  
koeff iz ienten  der  versch iedenen  G e n o t y p e n  aus den 
Geno typen f r equenzen  zweier  au fe inander  fo lgender  
Gene ra t ionen  al lein b e s t i m m t  werden  k6nnen,  h n  
zwei ten  Tell  der  Arbe i t ,  der  sp/ i ter  ver6f fen t l ich t  wird,  
werden die s t a t i s t i s chen  E igenschaf t en  einer  spe- 
ziellen, von HAYMAN aufges te l l ten  Sch/ i tz funkt ion  
un te r such t .  H ie rbe i  werden  Konf idenz in t e rva l l e  und  
S ign i f ikanz tes te  fiir  F i t ne s sw e r t e  b e t r a c h t e t  und  mi t  
Hilfe  von  S imu la t i ons s tud i en  geprfif t .  
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